
CIRCUIT CELLAR • DECEMBER 2018 #34126
FE

AT
U

RE
S

Self-Navigating Robots Use BLE

I n our project, we investigate using the
Received Signal Strength Indicator (RSSI)
of Bluetooth Low Energy (BLE) 4.0 chips
as a means for wheeled mobile robots

to find their way to a stationary base station.
The robots detect their proximity to the station
based on the strength of the signal, and move
toward what they believe to be the signal source.

Each robot was controlled by a Microchip
Technology PIC32MX250 microcontroller and used
a 3-axis magnetometer as compass to reliably turn
and two servos to drive. Each unit was powered
with three AA batteries. Finally, the chassis and
wheels of each car were 3D printed. Figure 1
shows the entire system.

In the process of designing and building the
hunting robots and the beacon, we encountered
an interesting challenge: counterfeit Bluetooth
modules with usable hardware but incorrect
firmware, obtained from unofficial vendors.
We explain the process we used to find, flash
and verify the correct firmware to use it for our
project.

SYSTEM DESIGN
The system consists of two robots and a base

station. We designed the robots to be small, light
and maneuverable. Each robot has two wheels
and a third, round plastic leg, serving as a

caster wheel. We 3D printed each robot’s frame
in Acrylonitrile Butadiene Styrene (ABS), which
made them easy to assemble. After printing
the parts, we mounted a three-AA battery pack
to the frame to provide power and screwed in
a Perfboard on standoffs. Figure 2 shows the
parts in each robot’s chassis.

The electronics for each robot consist
of four main components: A Microchip
PIC32MC250F128B MCU, a TDK Invensense MPU-
9250 IMU with a 3-axis gyroscope, accelerometer
and magnetometer, an HM-10 BLE module with
a Texas Instruments CC2541 chip, and two
FS90R micro continuous rotation servos. The
BLE module connects to the PIC through a UART
connection, and the IMU connects to the PIC
through an I2C bus. The base station is identical
to the robots, minus the IMU and servos. The HM-
10 Bluetooth module is mounted perpendicular
to the breadboard, sticking up in the air, in order
to, we hoped, improve the performance of the
radio. Figure 3 is a full schematic for one of
the robots. Not shown is the schematic of the
PIC32MC250F128B Dev Board created by Sean
Carroll. A link to that is available on the Circuit
Cellar article materials webpage.

While trying to use the Bluetooth modules,
which we bought on eBay, we discovered that
they didn’t conform with the data sheet [2].

Navigating indoors is a difficult but
interesting problem. Learn how these two
Cornell students use Bluetooth technology
to enable wheeled, mobile robots to
navigate toward a stationary base station.

Signals and Servos

By
 Jane Du and Jacob Glueck FIGURE 1

Full system with two robots and the base station

circuitcellar.com 27
FEATU

RES

After doing some research, we concluded
they were counterfeit! Although the boards
still had Texas Instruments CC2541 chips, the
firmware they were running was not genuine
firmware from Jnhuamao Technology. Luckily,
the only difference between the fake boards
and the genuine boards was that the genuine
boards had an external crystal. The genuine
firmware checks for the presence of the
crystal and works even without it. Because of
that, we were able to salvage the counterfeit
chips by reprogramming them with genuine
firmware, according to an Arduino Forum
post [3]. Essentially, we connected the chips
to an Arduino Teensy (which is 3.3 V, and
won’t damage the 3.3-V CC2541), as indicated
the table and schematic (Figure 4).

Then, we uploaded the CCLoader.
ino [4] sketch to the Arduino. This sketch
bit bangs the programming signals for the
CC2541. Finally, we ran CCLoader.exe [5]
in a Windows virtual machine, due to the
dubious origin of the software:

 CCLoader.exe <COM Port>
<Firmware.bin> 0

The firmware file came from the Arduino
Forum post. [6]

Next, we updated the chip’s firmware
from 540, the version we had just flashed
onto it, to the most recently released version
at the time, 603. [7] We connected the HM-10
module to a computer using a 3.3-V FTDI-
to-USB adapter. Then, using PuTTY—an SSH
client—we established a serial connection
(9,600 baud, 8N1) and sent the chip AT. If it is
connected properly, it will respond with OK.

The rest of the procedure is as follows.
Send the chip an AT+SBLUP command to put
it in firmware update mode. It will respond
with OK+SBLUP. Terminate the PuTTY session.
Run the HMSoft.exe program distributed
in the firmware update download. Again,
this was done in a Windows virtual machine,

because of the suspect software. Select the
proper port and firmware file using the
software and hit “Load Image.” The software
should handle the rest! To make sure it
works, establish a serial connection again
using PUTTY. Send the AT+VERS? command
to query the chip for version information.

At this point, we had the Bluetooth chips
in a working state. To have them measure
signal strength, we sent them the sequence
of commands shown in Table 1. One
interesting thing we noted about the chips
was that commands do not have to end with
newlines or carriage returns. However, if
sent, the chips will ignore them.

Once we had the Bluetooth signal strength
working, we configured the IMU, a QFN MPU-
9250 module [8] [9]. It has two dies: one is
the AK8963 3-axis magnetometer [10], and
the other contains the 3-axis gyroscope and
3-axis accelerometer, which we did not use.

The microcontroller communicates
with the IMU via I2C, and the compass is
connected to the rest of the MPU module

FIGURE 3
Robot schematics

Signals and Servos

FIGURE 2
Components of robot chassis

CIRCUIT CELLAR • DECEMBER 2018 #34128
FE

AT
U

RE
S

by an auxiliary I2C bus. For communication
between the microcontroller and the AK8963’s
main die, we based our work on basic I2C
functions from another Cornell ECE 4760
class project, the Self-Balancing Robot [11].
Their i2c_helper.h was very helpful. For
communication with the actual magnetometer,
we needed to configure the IMU to set the
compass as a slave on the I2C bus. For this, it
was necessary to enable pass-through mode
on the IMU during its configuration.

The AK8963 has several modes of
operation, and the chip must be set to
power-down mode before switching to other
modes. We read compass values with single
measurement mode [8]. A single compass
read involves setting the compass to single-
measurement mode in 14-bit resolution,
reading the six data registers (X low, X high,
Y low, Y high, Z low, Z high), reading the
Status 2 register to check for magnetic sensor
overflow, and finally waiting to ensure that
the IMU is not read too frequently. Without
reading the Status 2 register, the read is not
considered complete and further reads will
fail. If the IMU is read too often, it will not
have enough time to take measurements.

To calibrate the compass, the robots spun
in place when powered on. They recorded the
maximum and minimum values for each axis
and used that data to scale and center the
magnetometer readings. Once we had the
robots working, we turned to the algorithm.
Because they don’t have much data—only

TABLE 1
HM-10 Bluetooth module signal strength measurement commands

Command Description
AT+RESET Resets the chip to ensure it is in a clean state before receiving other commands.

AT+IBEA1 Sets the iBeacon functionality of the chip (1 on, 0 off). This allows the chip to be found with an RSSI scan.

AT+ROLE{0|1} Sets the role to either peripheral (0) or central (1). The base station is set to peripheral, and the robots
are set to central. Peripheral means the device will respond in inquiries from a central device. This allows
it to be discovered during an RSSI scan.

AT+IMME{0|1} Sets the work state of the device to either actively listening for Bluetooth signals (0), or only acting when
it receives a serial command (1). Once again, the base station is set to 0: it needs to listen for signals
and respond. The robots are set to 1, as the chips need to initiate scan requests when they receive the
command over serial.

AT+NAME{str} Sets the name of the chip (which is visible when scanning) to the string str (For example, AT+NAMEPIRATE
names the chip PIRATE). We gave all the chips unique names to make debugging easier.

AT+SHOW3 Configures the device to advertise both its name and RSSI when scanning.

AT+ADDR? Queries the device for its hardware address. We recorded the hardware device of each chip, as when
doing RSSI scans, the results are reported by hardware address.

AT+DISI? Performed only on the robots, causing a discovery scan. The result of the scan is a series of lines of the
form:
OK+DISC:00000000:00000000000000000000000000000000: 0000000000:6832A3801EBE:-080
The next to last token, 6832A3801EBE, is the hardware address of the discovered device, and the last
token, -080, is the measured RSSI. The chip will transmit a line for each device it finds (“line” is a
misnomer as it does not separate them with any characters), followed by OK+DISCE.

FIGURE 4
This shows the pin layout, physical setup and pin assignment required to program HM-10 module.

circuitcellar.com 29
FEATU

RES

the last few signal strength measurements—
we decided to use a simple gradient descent
algorithm (Figure 5).

RESULTS
When starting from 1 m away, the robots

successfully made it to the base station an
average of 80% of the time, in an average
of 126 seconds. One robot performed better
than the other, reaching the base station
100% of the time, compared to 60%, and it
arrived on average 8 cm closer. Although we
believe the worse-performing robot could be
tuned, neither robot was as fast as we would
have liked, and each made several wrong
turns. One of the main reasons for this was
the noise in RSSI measurements.

We expected that RSSI would vary with
distance according to:

RSSI A d= −10nlog()

where A and n are RF propagation
parameters in dBm, d is distance in meters,
and RSSI is the measured RSSI in dBm [12].
We experimented with RSSI measurements
to determine how well they worked by
measuring the RSSI while moving two
Bluetooth modules apart. One remained
stationary on the floor, and the other was
moved away from it 1 foot at a time. At each
point, we took three RSSI measurements
and averaged them. The results are shown in
Figure 6, and the original data are in Table 2.

 We fit the data using A=-49 and n=2.9,
resulting in the blue curve above (Expected
RSSI). While the general shape of the curves
match, there is significant noise in the
averaged RSSI data. Furthermore, when we
tried to reproduce the measurements, we
could not do so precisely; it seemed to depend
on the position of our feet! Even though it
was noisy, in general, RSSI increased as the
robots got closer together, which is all our
system required.

Despite the noise in the RSSI readings,
the robots performed surprisingly well. We
tested the robots by starting them both 1 m
from the base station, one on the north side,
and one on the south side. After they started,
we measured the time it took them to arrive
at the base station and flash their LEDs. We
set a timeout of 5 minutes, at which point we
would measure the distance between the robot
and the base station. If a robot ran into a wall
and couldn’t recover, we stopped it. We also
measured the distance when the robot arrived.
All distances were measured between the
Bluetooth modules. The results are displayed
in Table 3 with averages in Table 4.

We observed some interesting patterns
in the data. An obvious one is that Robot 1

always reached the base station, whereas
Robot 0 had only a 60% success rate. In
addition, when Robot 1 arrived, it was
on average 8 cm closer than Robot 0 and
converged about 30 seconds faster. We
surmise that the antennae on each robot
had different sensitivities, as both used
the same RSSI threshold for stopping once
they reached the goal. Another interesting
result was that when Robot 0 failed, it was
on average 3 m away—far off in the land of

Finish search
blinky celebrate

Finish turn Finish drive

Measure rssi twice,
take average

Drive straight forward

Compare new rssi
value to last_rssi

Randomly turn 90°
cw or 90° ccw,

followed by short
drive forward

rssi <= thresholdrssi <= threshold

rssi > last_rssi rssi <= last_rssi

(If last_rssi = 0, pick either of the
two outgoing edges to follow)

(If last_rssi = 0, pick either of the
two outgoing edges to follow)

FIGURE 5
The gradient descent algorithm. The initial state is measure RSSI twice and take the average.

FIGURE 6
Plot showing Bluetooth RSSI as a function of distance

CIRCUIT CELLAR • DECEMBER 2018 #34130
FE

AT
U

RE
S

shallow gradients. The only way to recover
from that was dumb luck, as the signal would
have been dominated by noise that far away.

CONCLUSIONS
This project was an interesting exploration

into short-range distance determination
using Bluetooth, a generally unconventional
approach. We knew that Bluetooth RSSI would
be noisy, mostly due to multipath interference
and the presence of multiple transmitters in
testing environments. The robots worked
reliably when they stayed within roughly 1
m of the beacon. After this, they entered the

land of shallow gradients. The signal strength
from the beacon—already noisy—would not
change very much, and often only from noise.
They normally could never recover from this.

There are two opportunities for
improvements or further development:

Communication between the two robots:
Although Bluetooth might not offer good
distance measurement via RSSI, it can be used
for reliable communication between modules.
It would be straightforward for one hunting
robot to inform the other whether or not it
believes it is approaching the beacon. In the
simplest case—a robot that is approaching, or
already has arrived—the beacon can provide
a second point of reference for a currently
hunting robot.

More complete usage of IMU: Additional
usage of the accelerometer and gyroscope,
coupled with feedback from the servos, would
allow the robots to maintain a dead-reckoning
position estimate. This, paired with inter-swarm
communication, would make for a more
sophisticated and likely more efficient system.
Of course, this does not resolve the shallow
gradients problem, but it would allow the
approach to the beacon to be much faster.

AUTHORS’ NOTE: We’d like to thank Justin
Cray for his contributions to the design and
construction of the Bluetooth robots.

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

References [1] through [12] as marked in the article can be found there.

RESOURCES
Microchip Technology | www.microchip.com

Pololu | www.pololu.com

TDK Invensense | www.invensense.com

Texas Instruments | www.ti.com

TABLE 3
Convergence performance of the
robots

TABLE 2
RSSI and distance data

Distance
(feet)

RSSI A RSSI B RSSI C
RSSI
Average

Expected
RSSI

1 -48 -48 -48 -48.00 -48.00

2 -56 -58 -52 -55.33 -57.03

3 -66 -66 -68 -66.67 -62.31

4 -64 -68 -65 -65.67 -66.06

5 -60 -70 -64 -64.67 -68.97

6 -80 -80 -76 -78.67 -71.34

7 -80 -79 -65 -74.67 -73.35

8 -68 -66 -72 -68.67 -75.09

(l)2-4 (l)5-7 Time (s)
Distance
(cm)

Start Time (s)
Distance
(cm)

Start

1 213 53 South 94 22 North
2 Timeout 420 South 153 36 North
3 308 19 South 105 36 North
4 Collision 340 South 80 20 North
5 Collision 240 South 92 30 North
6 179 46 North 117 20 South
7 56 45 North 162 24 South
8 59 27 North 197 26 South
9 59 19 North 79 30 South
10 Collision 231 North 67 23 South

Robot 0 Robot 1
Convergence time
(seconds)

146 115

Convergence rate 60% 100%

Final distance (cm) 35 27

Failure distance (cm) 308 –

TABLE 4
Average convergence behavior

